Student Computing Club:
 Dimension reduction algorithms for visualizing single-cell genomic data using R

Lukas M. Weber

Hicks Lab
Department of Biostatistics
Bloomberg School of Public Health
Johns Hopkins University

Motivating example

Dimension reduction

population

- Basophils
- CD16-_NK_cells

CD16+_NK_cells CD34+CD38+CD123-_HSPCs

- CD34+CD38+CD123+_HSPCs
- CD34+CD381o_HSCs
- CD4_T_cells

CD8_T_cells

- Mature_B_cells
- Monocytes
- pDCs
- Plasma_B_cells
- Pre_B_cells
- Pro B cells unassigned

Single-cell data

Single-cell data

Example: Mass cytometry (CyTOF)

targeted set of proteins of interest; bind to known antibodies

Single-cell data

Example: Single-cell RNA sequencing (scRNA-seq)

Dimension reduction

Dimension reduction

Issue: too many dimensions!

How to represent visually?
\rightarrow exploratory data analysis; presentation of results (reveal or display patterns of interest, e.g. clusters, trajectories, differential sample features)

How to analyze computationally?
\rightarrow curse of dimensionality; computational scalability

Dimension reduction

Summarize data using a lower number of dimensions

Single-cell data: two main applications

- visualization (i.e. plot in 2 or 3 dimensions)
- data preprocessing (curse of dimensionality, remove noise, correlated features, computational scalability)

Dimension reduction algorithms

- select or calculate smaller number of dimensions (features) that capture the underlying patterns of interest in the dataset
- many approaches
- relevant patterns depend on scientific question

Examples

Dataset

Levine_32dim: mass cytometry (CyTOF) dataset from Levine et al. (2015)

- healthy human bone marrow mononuclear cells (BMMCs)
- 32 surface protein markers
- reference cell population (cluster) labels for 14 immune cell populations
- 265,627 cells (104,184 or 39\% assigned)
- previously used to benchmark clustering algorithms in our publication (Weber and Robinson, 2016); available as formatted R/Bioconductor objects via HDCytoData package (Weber and Soneson, 2019)

Example: principal component analysis (PCA)

Intuitively: sequentially project data onto rotated orthogonal axes, where each axis captures maximal amount of remaining variance in data

Linear algorithm

- reduced dimensions (principal components) can be interpreted as combinations of original dimensions

Single-cell data

- PCA commonly used for preprocessing, i.e. reduce dimensionality prior to downstream analysis (e.g. keep top 50 or 100 PCs in scRNA-seq data)
- Often does not work well for visualization, due to nonlinear data structure

Example: principal component analysis (PCA)

Levine_32dim dataset

population

- Basophils
- CD16-_NK_cells CD16+_NK_cells CD34+CD38+CD123-_HSPCs
- CD34+CD38+CD123+_HSPCs
- CD34+CD381o_HSCs
- CD4_T_cells

CD8_T_cells

- Mature_B_cells
- Monocytes
- pDCs
- Plasma_B_cells
- Pre_B_cells
- Pro_B_cells unassigned

Example: t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008; van der Maaten 2014)

Developed for visualizing datasets in machine learning; quickly adopted by single-cell biology community

Nonlinear algorithm

Single-cell data

- Advantages: tends to clearly separate clusters (cell populations)
- Disadvantages: reduced dimensions difficult to interpret (especially global distances); can "force" cluster structure; computational scalability

Example: t-SNE

Levine_32dim dataset

population

- Basophils
- CD16-_NK_cells

CD16+_NK_cells
CD34+CD38+CD123-_HSPCs

- CD34+CD38+CD123+_HSPCs
- CD34+CD38lo_HSCs
- CD4_T_cells
- CD8 T cells
- Mature B cells
- Monocytes
- pDCs
- Plasma_B_cells
- Pre B cells
- Pro_B_cells
unassigned

Example: UMAP

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al. 2018)

Widely adopted for single-cell data within the last year

Nonlinear algorithm

Single-cell data

- Advantages: tends to separate clusters as well as t-SNE but preserves global distances more accurately; computationally efficient

Example: UMAP

Levine_32dim dataset

population

- Basophils
- CD16-_NK_cells

CD16+_NK_cells
CD34+CD38+CD123-_HSPCs
CD34+CD38+CD123+_HSPCs

- CD34+CD38lo_HSCs
- CD4_T_cells

CD8_T_cells

- Mature_B_cells
- Monocytes
- pDCs
- Plasma_B_cells
- Pre_B_cells
- Pro_B_cells
unassigned

More examples

Results

Reduced dimension plots for each method/dataset: Samusik_01 dataset (CyTOF)

labels
B-cell Frac A-C (pro-B cells)
Basophils
CD4 T cells
CD8 T cells
Classical Monocytes
CLP
CMP
Eosinophils
gd T cells
GMP
HSC
IgD- IgMpos B cells
IgDpos IgMpos B cells
lgM - lgD - B-cells Intermediate Monocytes Macrophages mDCs
MEP
MPP

- NK cells

NKT
Non-Classical Monocytes pDCs Plasma Cells unassigned

Results

Reduced dimension plots for each method/dataset: Koh dataset (scRNA-seq)

Results

Reduced dimension plots for each method/dataset: Trapnell dataset (scRNA-seq)

Interactive demo

Interactive demo

See RStudio

Thank you!

Additional slides

Curse of dimensionality

Standard (e.g. Euclidean) distances become largely meaningless in very high-dimensional spaces
\rightarrow all points reside in thin "shell" of high-dimensional sphere or cube, with ~zero interior volume; all points are approximately the same distance apart

	2-dimensional	$\varepsilon=0.01$		
1-dimensional		p	$(1-\varepsilon)^{p}$	$1-(1-\varepsilon)^{p}$
	$1-(1-\varepsilon)^{2}$	1	0.99	0.01
H $\mathrm{H} / 2$ $1-\varepsilon$ $\mathrm{e} / 2$	\$ $\geqslant \leqslant \geqslant \leqslant \geqslant$	2	0.9801	0.0199
		3	0.9703	0.0297
	* $(1-\varepsilon)^{2}$	\ldots		
	*	10	0.9044	0.0956
	-	100	0.3660	0.6340
		1000	4.32e-05	~1.0
		10000	$2.25 \mathrm{e}-44$	~1.0

